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Noncoincidence of Geodesic Lengths and Hearing 
Elliptic Quantum Billiards 
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Assume that the planar region .(2 has a C ~ boundary 012 and is strictly convex 
in the sense that the tangent angle determines a point on the boundary. The 
lengths of invariant circles for the billiard ball map (or caustics) accumulate on 
10QI. It follows from direct calculations and from relations between the lengths 
of invariant circles and the lengths of trajectories of the billiard ball map that 
under mild assumptions on the lengths of some geodesics the region satisfies the 
strong noncoincidence condition. This condition plays a role in recovering the 
lengths of closed geodesics from the spectrum of the Laplacian. Asymptotics for 
the lengths of invariant circles and an application to ellipses are discussed. In 
addition; some examples regarding strong non coincidence are given. 
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OVERVIEW 

Sections 1-3 provide the background  for the new results and  examples 
regarding noncoincidence  in Sections 4-6  and Corol lary 7. Sections 7 and 
8 illustrate the use of noncoincidence  with invariants.  

1. THE BILLIARD BALL M A P  

Let /2 denote  a bounded  domain  in the plane. A geodesic in such a 
domain  is a con t inuous  curve consist ing of line segments with endpoints  on 
the boundary .  0/2, so that  two segments meeting at a point  p form equal 
angles with the tangent  to 0/2 at p. 

The collection of uni t  vectors over the b o u n d a r y  poin t ing  into the 

domain  is denoted by So~/2  (It is homeomorph ic  to a cylinder.) The 
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billiard ball map fl: S~Qg2~ S~Qg2 is such that fl(u)= v when v follows 
directly after u along the same (oriented) geodesic. 

Assume that 0~ is C 1. Denote arc length along 0~ by s and the angle 
of the tangent t(s) with the horizontal axis [the direction (1, 0)] by ~b(s). 
This angle is defined (on the unit circle) once an orientation of 092 is 
chosen and we choose the counterclockwise orientation here. The point 
(x(s), y(s)) EOg2 is given by 

x(s) = cos(~b(t)) dt, y(s) = sin(~b(t)) dt 
�9 0 ,s'O 

We call g2 strictly convex when the tangent angle is strictly increasing 
with s. Then the tangent angle determines the point s on 0/2 uniquely. 

Assume that the initial trajectory of the billiard ball beginning at s 
forms the angle 0 with the forward (counterclockwise) tangent to 0~ at s. 
The angle 0 is called the angle of incidence at s. 

To find the image (Sl, 0t) of (s, 0) under the billiard ball map we must 
solve 

f: ;: 'cos(qb(t))dt=lcos(ck+O), sin($(t))dt=lsin(qS+O) (1.1) 

for sl (and l). Then with $1 =qS(sl) and ~b =~b(s), 01 = q S t - $ - 0 .  

2. PERIODIC POINTS 

The orbit corresponding to a closed trajectory of the billiard ball pass- 
ing through (s, O) is a periodic orbit for fl, and when n is the least positive 
integer with fl"(s, O)= (s, 0), then 11 is called the (primitive) period of the 
orbit. 

To any orbit we associate a rotation number (if it exists) and to a 
periodic orbit we also associate a winding number. 

Def ini t ion 1. Assume that the tangent angle $ is defined along the 
region's boundary Of 2. The orbit starting at (sl, 01 ) (with 01 >/0 by conven- 
tion) has rotation number ~o when 

co = , l~m ~ ( ~ j + l  - -  ~ j )  
. =  

where (3)+ i, 0/+ l)=fl(~), 0j), q~i= $(sj), and the tangent angle is taken so 
that the differences are always nonnegative (and at most 2~). The rotation 
number is defined only when the above limit exists. 
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For  example, the rotation number is between 0 and 1, the rotation 
number  for 0 = 0 is zero, and the rotation number for 0 = ~ is one. 

Definition 2. 
when 

A periodic orbit with period n has w#Tding number m 

n +  I 

~. (qSj +, - ~.;) = 2xm 
j = l  

We denote the collection of all geodesics with period 17 and winding 
number m by F(m, n) (the period is not assumed primitive). 

We recall Poincar~'s argument <t~ that there is always at least one 
periodic orbit with each period and allowable winding number. Such a 
periodic orbit { (s l ,  01) ..... (s,, 0,)} can be found by examining the ordered 
collection of points {sl ..... s,,}. For each fixed 1 ~<k~<n-2,  set X=Sk, 
) '=Sk+, ,  Z=Sk+2. I f  k = n - - l ,  then take z=so,  and if k = n ,  then set 
y=s ,  and : = s 2 .  Let g = g ( y ; x ,  z) be the sum of the lengths of the line 
segment between x and y and the line segment between y and z. By direct 
calculation, the collection {sl ..... s,} defines a periodic orbit for the bil l iard 
ball map exactly when 8L/Sy = 0 holds for each k. The angles in the orbit 
are those 0k SO that the line through sk along 0k passes through Sk +1. 

T h e o r e m .  I~~ Assume that /2 is a strictly convex domain in R-" 
whose boundary is C t. Fix integers n/> 2 and m ~< n/2. Then F(m, n) ~ ~ .  

Proof. Consider all oriented collections of n points, {sl ..... s,,}, with 
Sk ~ 0Q, which wind around 8s m times when we take s , ,+~=s 1. Because 
m <. n/2, this collection is not empty. Let M be the sum of the lengths of 
the line segments Sk, Sk +1 (where when k = n we take s,,+~= s A. Then M is 
differentiable in each of the sk and bounded above, and thus there is a 
collection {q, ..... q,,} that maximizes M. For  each fixed l ~ k ~ < n - 1 ,  
L = L(sk+ ~; st., sk+:)  has a critical point (as a function of sk+ ~), because 
M is maximized. Thus {ql ..... q,,} is a periodic orbit for the billiard ball 
map. The collection {ql ..... q,,} still has period n (the length M would be 
diminished if two qk'S coincided), and still has winding number  m. This 
completes the proof  of the theorem. 

R e m a r k  3. When 8f2 is C 1 and strictly convex, the length function 
L is C l as a function of each of the points {sl ..... s,,}. Thus it follows from 
the proof  of the theorem above that if Yo ~ F(m, n) is an orbit in /2  and K,, 
0 ~< t < b ,  are strictly convex C I curves with K,---, 8~2 as t - .  0 +, then for 
each t, K, has a F (m,n)  orbit y, so that y, ~Yo and L ( y , ) ~ L ( y o )  as 
t ~ 0  § Here K,--*Sf2 as C 1 curves in the plane parametrized by the 
tangent angle, and y, ---, Yo as curves in the plane. 
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3. L E N G T H  S P E C T R U M  

The length of geodesic segments used in the proof above also provides 
a generating function for the canonical relation associated with the 
fundamental solution for the Dirichlet problem for the Laplacian A in/2.  
(For  the development see refs. 8 and 3-6 and for a summary in dynamical 
terms see ref. 11.) Consider the eigenvalues 22 of 

A u = 2 2 u  in ~2 

utah2 = 0 

and define the enumerating measure 

GIv) =y'6(v-2) 

Then it follows from Anderson and Melrose ~2~ that 

singular suppo r t (# ) c  -L~ ~ w {0} w s 

where ..~ is the length spectrum consisting of the lengths of closed geodesics 
and any multiple of the length of the boundary. 

Marvizi and Melrose give a partial converse to this result. Let t ...... and 
7", .... be (respectively) the infimum and supremum of the lengths of 
geodesics in /~(nrl, ll). 

T h e o r e m .  18> Assume that /2 is a smoothly (C ~-~) bounded, strictly 
convex planar domain, and that there exists an N such that for n > N 

L ( y , , , . v ) ~ t l  .... V y m . v ~ F ( m , p ) ,  m > l  

Then t~.,, ~ sing.supp.(O). The same statement holds with T~.,, replacing t~.,, 
and with Neumann or Robin boundary conditions. 

The restriction placed on lengths in the theorem above is called "non- 
coincidence." This condition is used as follows. The singular support of 
is decomposed, using oscillatory integrals, into parts ~s for which it turns 
out that the phase is stationary at the lengths of closed geodesics with 
period j. This and a lemma due to H. Soga show that t~.,, ~ sing.supp.(~,,) 
(this is the singular spectrum tS~). To conclude here that t ~.,, ~ sing.supp.(~), 
the noncoincidence condition is needed (to avoid cancellation). 

The use of the theorem above is that the singular spectrum determines 
geometric quantities associated to the region g2. As will be seen in Section 
7, one can extract the shape of certain domains from invariants which are 
determined by asymptotics for the lengths t t.,,. If noncoincidence holds, 
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then these lengths are included in the singular spectrum. However, if other 
lengths, of y ..... with m > 1, approach L(OI2), then it might be impossible 
to read t~,,, from the length spectrum. In fact, the asymptotic behavior of 
t~.,, might be impossible to read from the singular spectrum because other 
lengths might also appear. This problem is avoided by ref. 8 via the 
requirement that 36 > 0 with 

(L(OI2) - 6 ,  L(OI2)) n ~~ c Q) L(F(1, n)) 
H ~ 2  

We will call noncoincidence with this additional requirement strong non- 
coincidence. 

4. N O N - C O I N C I D E N C E  

For use with the theorems of Section 3 and 8, one wishes to extend the 
class of regions for which strong noncoincidence holds. In ref. 8 it is noted 
that for C ~ boundaries coincidence can occur only for small winding num- 
bers, and that strong noncoincidence holds for a dense set in the C ~ topol- 
ogy including a neighborhood of circles. This neighborhood, however, is 
not known to include a neighborhood of any ellipses. The purposes of this 
section are to confirm the observations of ref. 8, to extend the class of 
regions with the strong noncoincidence property, and to further identify 
those orbits whose lengths may lead to coincidence or approach L(0~). 

Propos i t ion  4. (8) Assume that 0s is C ~ and strictly convex. Fix 
m >~ 1 and for n ~> 2m let 7 ..... be any closed geodesic with winding number 
171 and period i1. Then as n ~ ~ ,  L(7, ..... ) ---, mL(a(2). 

Proof. Assume for the moment that 0/2 is C 3, with radius of cur- 
vature X(s). Equation (1.1) gives ~b~~~b+O(0), so (~l=q~+bO+O(O'-),  
with b a constant. Replacing ~b(t) in the integral in Eq. (1.1) by its Taylor 
series and eliminating/, we get 

1 
tan(tk + 01 = bx cos ~b. 0 bz sin ~b. 0 

1 bZ ( Z sin-" ~'~ 02 
+ ~ 2 sin ~b + X cos q~ - 2 sin r -t cos ~b J + O(03) 

= t a n  ~b + c~s,_~ 0 +  0(02) 
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This yields b = 2 and consequently, for the rotation number co (which is 
well defined since ~, ...... is periodic), c o ~ O / n  + 0 ( 0 2 ) ,  and for the length of 
the line segment l (s)  ~ st  - s  + 0 ( 0 2 ) .  It follows that 

0 < (st  - s)  - l (s)  <<. c ( s )  n'-co 2 (4.1) 

where the numbers c(s )  are uniformly bounded for s ~ O / 2 ,  say by C. Hence 

Cm 2 
0 < m L ( O / 2 )  - L(? ...... ) <~ nCco 2 - (4.2) 

II 

Whenever 0/2 is C t and strictly convex, it can be approximated by C 3 
curves K , ,  0 <~ t < b, with radii of curvature Z, > 0. As noted in Remark 3, 
the lengths, winding numbers, and periods of closed geodesics are also 
approximated. Since (4.2) is independent of Z, the proof of the proposition 
is complete. | 

The following proposition is not needed for Theorem 6, but is included 
as an estimate on those orbits whose lengths might (not) approach L(O/2) .  

Proposi t ion  5. There is a number to > 0, depending only on s so 
that for each m and n with m ~< n/2 

/1 
mto ~< L(y ...... ) ~<~ T1. z (4.3) 

P r o o f .  Since 7' ..... has n segments and each segment is of length at 
most �89 it is clear that L()' ...... )~<(n/2)Tt.2. Consider the largest 
(ordinary) circle inscribed in 0/2, and let to be twice its diameter. Then the 
lower estimate holds for geodesics in (the region bounded by) the circle. In 
fact, for any oriented collections of n points {~t ..... ~,,} which wind around 
the (inscribed) circle m times, the sum of the lengths of the segments con- 
necting the points is at least into.  Consider then a trajectory with points 
{st ..... s,,}, with S k ~ O / 2 ,  which winds around 0/2 17.1 times, and take 
~bk = ~b(Sk) to be the tangent angles. Then taking the points in the inscribed 
circle to be ~. = ~b,., {q~t ..... q~,,} winds around the circle m times and for the 
lengths, taken in the plane, Z [~k+ t--~-[~< ~ lSk+ ~--Sk[. TO confirm the 
last inequality consider a starting point ~b k and for j > k examine the line 
segment from ~b k to ~bj. If this line segment intersects the circle, then 
Z [~k+/+t--~k+/[ ~<Z [Sk+/+t--Sk+/], the sums being o v e r O < ~ l < ~ k - j .  If 
the line segment does not intersect the circle and ~i--~bk >2n,  then the 
orbit encloses the circle and, again, 5Z [~k + t+ t--q~k +/I <~ Y~ I Sk +/+ t--Sk +/I. 
Hence mto~<L(),, ..... ). | 
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Theorem 6. Assume that a planar region 12 has C ~ boundary and 
is strictly convex in the sense that the tangent angle determines a point on 
the boundary. Then the region satisfies noncoincidence. 

Proof. By Proposition 4, or alternatively by Proposition 5, 3M so 
that for m >~M, L(~'m,)> L(OI2)+ 1. We thus assume from now on that 
m<M.  

By Proposition 4 there is an N with L(y ...... ) > 1.5L(012) for any choice 
of 2 ~< m < M whenever n > N. II 

R e m a r k .  The proof of Theorem 6 and Eq. (4.2) can be used to 
show that strong noncoincidence holds in special cases. An example of this 
is given in Corollary 7. However, the example of an ellipse for which the 
length of the billiard orbit of period two along the minor axis equals half 
the circumference shows that strong noncoincidence does not hold for con- 
vex regions in general. [In this example the length of the (4,2) orbit along 
the minor axis coincides with the length of the boundary, and one can 
perturb this ellipse so that a (4,2) orbit with primitive period 4 has length 
coinciding with that of the boundary.] 

5. EXAMPLE OF A SMOOTH NONCONVEX D O M A I N  WITH 
COINCIDENCE 

Consider the planar region built on a rectangular grid as follows. The 
base is of length 3, the left side and top are of length 2, and on the right 
side a collection of "stairs" each half the size of the previous one is con- 
structed (see Fig. 1). The tallest stair has height 1, the next has height 0.5, 
etc. 

The total length of the boundary is 10, and for each integer k/> 1 there 
is a (5 �9 2 k, 10.2 k) orbit with segments of length 2-k  inside the stair with 

Fig. 1. Base shape for a smooth example of coincidence. 

822/85/3-4-1'1 
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height 2 -k. This orbit consists of repetitions of the period-2 orbit with 
segments whose endpoints lie on the base and top of the stair and its length 
is 10. 

It is clear that the region's boundary can be made smooth, by 
changing the boundary where the horizontal and vertical segments meet, 
but not changing the horizontal segments at the top of the stairs and thus 
retaining the orbits of length 10 above. Thus strong noncoincidence fails. 

Alternatively, one can replace the straight-line segments forming the top 
of the stairs with concave-down elliptic segments, say, so that the lengths 
of the (5-2 k, 10.2 k) orbits still coincide with the length of the boundary, 
but the orbits have primitive period 10.2 k (even though this is not 
required for coincidence). Note that the lengths of the trajectories and of 
the boundary are increased slightly here, but that the adjustment for coin- 
cidence can be made since one can always increase or decrease the length 
of the base and top near the left side. Similarly, one can arrange (say, by 
increasing the curvature of the elliptic segments) to have the lengths of the 
(5 �9 2 ~, 10.2 k) orbits not to coincide with the length of the boundary, but 
to approach the length of the boundary as k--* oo. 

With any fixed length in mind, periodic orbits in the "stairs" with 
winding numbers larger than any lower bound prescribed in advance can 
be chosen to approach that length. It follows that any noncoincidence con- 
dition fails. It should be noted that even in the smoothed version of this 
example the lengths of those (1, n) orbits that exist will not approach the 
length of the boundary (which is not surprising since this region is not 
convex). 

6. EXAMPLE OF A CONVEX D O M A I N  WITH COINCIDENCE 

This region consists of a circular arc of radius R with endpoints B and 
C and two line segments meeting at a point A (see Fig. 2). The segment AB 
meets the circular arc at a right angle. The desired billiard trajectory begins 

S 
B 

P Y c 

A 

Fig. 2. Base shape for a convex example of coincidence. 
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at a right angle to the segment AB at the point S near B, is reflected by 
the arc segment (BC), and is reflected by the line segment CA at a point 
M so as to meet AB at a right angle again, at the point E. In view of the 
two right angles, the trajectory is closed. 

Let 0~ denote the angle between the billiard bali's trajectory and the 
line segment CA, and let 0 denote the trajectory's angle with the circular 
arc. To obtain the trajectory above with n reflections off of the circular arc 
we need to choose the segment CA so that ~ = -170 + re/2, which is possible 
(consider fixing 0 and n and the point C so that 0 <170 < n/2 and varying 
ct between the two extremes ct = 0 and ~ = n). 

Let x denote the length of the segment of the billiard trajectory with 
one endpoint at the point p on the circular arc and one at M. Now one 
wishes to change the portion of the region's boundary outside this last 
segment so that similar closed orbits with smaller angles of incidence 0 will 
be created without destroying the existing orbit. One also wishes to arrange 
the lengths of these orbits to approach the length of the region's boundary. 

To see that these can be achieved, we calculate the lengths of the cur- 
ves which are involved. Let y denote the length of the arc segment between 
p and C and z denote the length of the line segment CM. The length of the 
region's boundary (without the modification near x) is 

L(OI2) IME[ (1 + s i n ~ )  . . . .  + ISEI +R(1 - c o s O ) + R O + 2 ( n -  1 ) R O + y + z  
cos ct / 

The length of the trajectory is 

L ( y ) = 2 [ I M E [  + x + R  sin 0 + 2 ( 1 7 -  1) R sin 0] 

The following relations also hold: 

IMEI = R sin (0)[ 1 + 2 cos(20) + ... + 2 sin (2(n - 1 ) 0)] + x cos(2n0) 

ISEI = 2R sin (0)[sin(20) + ... + 2 sin(2(n - 1 ) 0)] + x sin(2n0) 

The question is, then, whether x and 0 can be adjusted to keep L(Og2) 
constant and have n ~ oo. The answer is yes, and to see this we must 
analyze how y changes when 0 changes. For a circular arc with incident 
angle 0, the length of a segment of the geodesic of period n is 

n )  2Rrc R~z 3 
l = 2 R s i n ( O ) = 2 R s i n  n n 3 - n - 3 +  O(n-5) 
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and the difference between the arc length along the boundary and the 
length of the geodesic segments for n reflections is 

L(Ot?) - L(y, , )  = n n - 2 R  sin ~ --~"- n--2 .~ O(n - 4 )  

Hence L ( a g 2 ) - L ( y , , ) < I  for large n and the above adjustment can be 
made. [One starts with L(as a bit larger than the length of the orbit star- 
ting at S, and the adjustment to Of 2 is made by moving C toward p along 
the circular arc and replacing the line segment M C  with a number of line 
segments. Corresponding to a smaller angle 0 a larger angle ~ is needed, so 
the line segments replacing M C  keep OO convex. The boundary is not 
adjusted on its portion M A B p ] .  

This construction gives billiard trajectories so that L ( y 2 , . ) ~ L ( 0 0 )  
and thus it may be impossible to calculate L ( O 0 )  from the singular 
spectrum. 

Note that here we have used the fact that the reflected trajectories 
meet the segment B A  at right angles (specifically near B), and so in this 
example the boundary cannot be made C 1. 

7. L E N G T H S  A N D  SPECTRAL I N V A R I A N T S  

The results in this and the next section follow refs. 8 and 1. Assume 
henceforth that 0s is C 2 and has positive curvature. 

A planar curve C whose tangents are invariant under reflection at the 
boundary defines an invariant circle for the billiard ball map and is also 
called a caustic. It is clear that a line segment tangent to C is part of a 
geodesic whose every segment is tangent to C and thus that near as there 

q 

I r 

Fig. 3, An invariant circle. 
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is a one-to-one correspondence of C 3 convex caustics and invariant 
sections for the boundary map. Such curves C are characterized by the 
Lazutkin parameter. 

For  CoY2 a strictly convex curve and a point q E0f2, there are 
precisely two points r r ~ C so that the tangent lines to C at r and r 
go through q. We denote the lengths of the line segments between r and 
q and between q and ~b 2 by r and l, and the arc length along C between ~b, 
and r by s, and define the Lazutkh~ parameter V of C and 0f2 at q by 
V = r + l - s .  (See Fig. 3.) 

/ e m m a .  ~7~ Assume that 0Y2 is C ~ and strictly convex. A strictly 
convex C ~ closed planar curve homotopic to 0f2, C c l 2 ,  is a caustic iff the 
Lazutkin parameter of C and 0K2 at q ~ 0/2 is independent of the point q. 
In fact, 

d V  
( u )  = c o s  O§ - c o s  O_(u) 

where u denotes arc length along 0f2 and O+(u) and O_(u) are the angles 
formed at u with the tangent to 0g2 by the outgoing and incoming geodesic 
segments. 

Let ~b be a point on 0g2 (q above in terms of tangent angle) and 
~t < ~b < r be the two points on C where tangent lines to C pass through 
~b, and let k denote the curvature function of 012. 

The parameter A := r - ~b = ~b - q~l is essentially the rotation number 
~o. More precisely, 

and 

2 LI(r de = co 

co 2 ~ (12) 2/3 G(k) V "-/3 + O(V4/3), f~ G(k) = k2/3(~) dqb 

Our variant of Birkhoff's invariant is G(k). 
After inversion and integration, we obtain a formal power series at 

V= 0 for the" length of an invariant curve L(C) in terms of V 2/3. The coef- 
ficients of this series and G above are the caustics' invariants. That is, with 
k and f denoting the curvatures of 0t2 and of C, 

k(r ~ ~, Ej(f)(r V "-j/3 
j=O 
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and Eo( f )=  f, so there are Mj with 

f(q~)-' ~ Mj(k)(~) V 2J/3 

and for the length of C 

f  l+l ll 
j=O 

where 

Jj = Ji(k) = f]~ Mj(k)(~b) d~b (7.2) 

are the caustics' invariants. These mvariants can be calculated from (7.1) 
and the geometry. 

Beginning with the Ej, one obtains 

k(~b) ~f(q$) + (~ ) " /3  I 213 ,, " l " _  l_ c513~ VzI3 ( g f  ~f _ ~ f  - l i3( f , ,  2-' , 
1 le4/31ef4) I (]131rtf(3) l f l l3 l t rn '12 L l lr--213t trr~2 +(~) , /3  [ ~ j  J - - T s J  . ' . '  - - ~ J  , J , - - 9 . - -  , J  ' 

11 f 4 /3 fu  1 [ ' - -513[f ,  I 21t"7/3" ] V413 4"0./ J - - ~ d  t j )  4"i- fl/3(f')2+T6j i " [ - 0 ( V 6 1 3 )  

Further calculations give 

= I]" k -  Jo '(~) dck = L(a~2), j ,  = _(~)2/3 _, f2. k-l/3(~ b) d~ 
- Z J o  

and 
2~ 

j_, = ~ (I)  '/-` ~o 
(Sk-5f3(k') 2 + 9kW3)(~b) d~b 

8. RELATIONS ARIS ING FROM THE D Y N A M I C S  ON 
A CAUSTIC 

Consider a geodesic y (which we will view as a biinfinite sequence in 
S0~2) and a distinguished starting point ~ in y. Let l_(fl, ,(~),fl.-l(~)) 
denote the angle (in TR-') between the successive segments of the geodesic, 
and let [, [ denote distance in R 2. Set 

m 

(o,,,(y,~)=2-~, ~] L(#"(~, ),#"-'(~)) 
s l :  l 
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and 

171 
n =  1 

where rc is the projection (to 0f2 = R2). 
On a caustic C, A., and co,. are related to the Lazutkin parameter and 

the length of the caustic: 

P r o p o s i t i o n .  I l l  For an invariant circle C, y a closed geodesic of 
period m tangent to C, and ~ ~ 7, 

mV( C, 0s mA,,,(y, ~)-mco, , (y ,  ~). L( C) 

where L(C) is the length of C and V is the Lazutkin parameter. 

Propos i t ionJ  I~ For a geodesic y tangent to a fixed invariant 
circle C, 

co(y) := lim co,,,(y, ~) 

is well defined. In fact, co is independent of the choice of y tangent to C. 

C o r o l l a r y .  I~ For  a geodesic y tangent to a caustic C, 

A(y) := lim Am(y, ~) 

is well defined and independent of y. Moreover, 

V( C, 0s =A(y)- -co(y)  L( C) (8.1) 

The boundary map 0: B*OO---,B*OO is defined as follows. When 
ueSpOs defines the incidence angle 0 and ~B*Og? with ~=cos (0 )  and 

t v=fl(u) defines the incidence angle 0 ,  then ~'=6(~)eB,1, ,)0s with 
~' = cos(0'). 

This map preserves the canonical, exact, two-form v on B*0s and 
Marvizi and Melrose calculated explicitly its pullback of a one-form ~ with 
d~ = v. This leads to spectral invariance of the wave invariants described 
below. 

There is a function 

g, eC~(B*Og?) with 6 = exp(-(V'-Hr + ~b 

where He is the Hamiltonian vector field of (, and ~O is a smooth symplectic 
map which fixes the boundary component S *  00  of B* 0g? to all orders. 
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This determines the Taylor series for ( at S*  0/2. (The Hamiltonian above 
is called the interpolating HamiltonianJ 9~) One can choose ( so that d( ~ 0 
on all of B* 0/2 and so that ( = 2 on the boundary component S*_ 0/2. 

With s denoting arc length along 0/2, the one-form dz is defined on the 
curve {( = c} via dz(Hr 1 and z(s = 0 ) =  0. The function 

I(c) = fie=<-/& 

is C ~ in c near 0, with a Taylor series at c = 0 which is independent of the 
choice of (. The wave invariants are the coefficients in this Taylor series, 
namely 

dkI 0 
Ik+, =--;-; ( ) ,  k=0, 1,2 

a c  ~ 

Subsequently, ref. 8 shows that, with v denoting the symplectic form of 
B* 0g2, 

( 5 * z - z - (  l/'-, ~5"(-( ,  v = d (  ix dz 

where equivalence is in the sense of Taylor series at ( - -0 .  
Marvizi and Melrose now set 

F(() = I(u) du, ~=r(()d(zlS(O)+ds 

Then e is a 1-form on B*OI2 with dot = v. 
Further calculations show that 

i F(O ,p 2 ) 
- = - 7i-  - + a ' s - ,  + / ,  

where h vanishes to all orders at S *  0/2. This determines the generating 
function for the length in Poincar~'s theorem from Section 2 explicitly. 

On a simple closed geodesic with period n, Y l .... 

and thus the length of Yl,,, is 

L(yl. n) = L(0s -- F(() + ~(I(() 

Hence ( and I (0 ,  computed for closed simple geodesics, have asymptotic 
expansions in terms of the rotation number squared, that is, 1/n 2 for YL,,. 
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Differentiating I(() and L(yL,  ) (implicitly), one concludes that the 
power series for ( and I(() as functions of the rotation number (squared) 
are determined by the length spectrum. 

Under the strong noncoincidence assumption (see pp. 490 and 495 of 
and the discussion in Section 3 above), the length spectrum is determined 
by the spectrum for the Laplacian with Dirichlet, Neumann, or Robin 
boundary conditions; c6"8~ the assymptotics above are spectral invariants. 
Using the relations involving invariant curves above and the spectral 
invariance of the wave invariants, we obtain that the same invariance holds 
for the caustics' invariants. 

Theorem.  ~1~ The caustics' invariants are determined by the spec- 
trum of the Laplacian in a C ~ planar domain that satisfies the strong non- 
coincidence condition. 

T h e o r e m .  .1~ Assume that a planar curve is C ~, closed, has strictly 
positive curvature, has fixed first wave or caustics' invariant (the length L) 
and second wave or caustics' invariant (J~), and maximizes -6G.  Then the 
curve is an ellipse. 

Corol lary 7. An ellipse for which the length of the minor axis 
exceeds one-fourth of the length of the ellipse is determined by the spec- 
trum of the Laplacian among C ~ planar domains whose boundaries have 
strictly positive curvature and are near the ellipse. 

Proof. Since the shortest of the orbits with winding number at least 
two lies along the minor axis of the ellipse, it follows that M = 2 and N =  4 
can be used in Eq. (4.2) and the proof of Theorem 6. Thus strong noncoin- 
cidence holds for the ellipse. By Remark 3, for planar domains whose 
boundaries have strictly positive curvature near that of the ellipse, M = 2 
and N =  4 can also be used in (4.2). Now the theorem above establishes the 
corollary. 
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